Принцип работы солнечного коллектора

Про солнечные коллекторы в наше время, слышали, почти все. В общих чертах, почти все понимают, что это устройство, которое помогает преобразовать энергию солнца в тепло. Однако, на самом деле, практически, практически, никто не знает, «что это такое и как оно работает».

Национальная энциклопедия строительства ProfiDom.com.ua публикует краткий курс – «ликбез» по основам теории солнечных коллекторов.

Принцип работы солнечных коллекторов уникален. Если в котлах нагрев жидкости происходит за счёт энергии, высвобождающейся при сгорании топлива, а в тепловых насосах — тепла почвы, воздуха или воды, то гелиоколлекторы получают его напрямую от главного источника тепла в Солнечной системе — Солнца.
Источник этот — неиссякаемый, экологичный, доступный всем на Земле и, что немаловажно, бесплатный. Правда, чтобы эффективно использовать его в бытовых целях для нагрева воды или теплоносителя, понадобится вложиться не только в сами солнечные коллекторы, но и в разнообразное оборудование, обслуживающее их. При этом. необходимо заранее учесть ряд специфических нюансов работы гелиоколлекторов и предусмотреть варианты защиты от некоторых из них.

Характерная черта солнечных коллекторов, отличающая их от других видов теплогенераторов, — их сезонность. Коллектор получает тепловую энергию из солнечных лучей, соответственно, нет солнца — нет тепла. Гелиоколлекторы вносят свой вклад в систему теплоснабжения только в светлое время суток, то есть днём, ночью же они пассивны. Продолжительность светового дня тоже играет роль: чем он короче, тем меньше коллектор получит энергии за сутки. Поэтому, один и тот же гелиоколлектор в разное время года будет получать разное количество тепла. Изменение производительности коллектора в зависимости от сезона — один из важнейших факторов, который необходимо учитывать при расчётах.

Пик эффективности солнечных коллекторов совпадает с пиком инсоляции. Больше всего тепла коллекторы приносят в период с мая по август. В межсезонье продуктивность коллекторов падает и достигает минимума к декабрю-январю. Однако, у приборов разных типов это снижение эффективности неодинаково. Дело в том, что производительность коллектора зависит от двух параметров — сколько энергии он получит от солнца и сколько тепла при этом потеряет из-за несовершенства конструкции. Поэтому производители принимают меры по повышению теплопоглощения — с одной стороны, и по снижению теплопотерь — с другой.

Разные конструкции — разный КПД
На рынке наиболее распространены гелиоколлекторы двух основных конструкций — плоские и вакуумные трубчатые, последние, также, принято подразделять на прямопроточные и с эффектом «тепловой трубки». Эти различия вызваны как раз поиском решений проблем получения и сохранения тепла солнечного излучения. Проблемы эти кроются в самом принципе работы коллекторов.

Как известно, солнечные лучи нагревают объекты неодинаково, и во многом, это зависит от поверхности. Одни покрытия отражают большую часть светового потока, другие, напротив, поглощают. Максимальным коэффициентом поглощения светового излучения обладают поверхности с чёрным покрытием, что и используется в гелиоколлекторах.

Основный рабочий элемент в их конструкции — абсорбер (поглотитель), представляющий собой обычно медную пластину с приваренной трубкой. Поверхность абсорбера, обращённая к солнцу, имеет специальное чёрное покрытие, чтобы лучи могли передать ей как можно больше тепловой энергии.

Пластина, а с ней и трубка быстро нагреваются, а циркулирующая по трубке жидкость забирает это тепло и транспортирует далее в систему. Но горячая пластина абсорбера начинает сама излучать тепло в окружающую среду и нагревать контактирующий с ней воздух. Чтобы этого не происходило, абсорбер изолируют от открытой атмосферы. Меры, увеличивающие количество получаемого от солнца тепла, обычно касаются стекла и абсорбера. У обычных стёкол есть ряд недостатков — они могут бликовать (то есть отражать часть солнечного света вместо того, чтобы пропускать его внутрь), к тому же часть лучей не попадает внутрь из-за их недостаточной прозрачности.

Поэтому, в высокотехнологичных гелиоколлекторах применяются специально разработанные стёкла с пониженным содержанием железа, отличающиеся большей прозрачностью, по сравнению с обычными. Они пропускают больше света, а значит, коллектор получит дополнительную тепловую энергию. Помимо этого, стекло часто снабжают антибликовым покрытием — оно уменьшает долю отражённого поверхностью света и тоже способствует увеличению производительности коллектора. Важна также и чистота — запылённое или запотевшее стекло, очевидно, пропускает меньше света. Чтобы внутрь коллектора не забивалась пыль и не попадала влага, его корпус нередко делают герметичным и даже заполняют инертным газом. Правда, эти меры нужны только для плоских коллекторов — у вакуумных моделей, о которых речь пойдёт ниже, таких проблем нет.

Что касается абсорбера, то здесь все технологии направлены на повышение его поглощающей способности. В дешёвых гелиоколлекторах пластину абсорбера нередко просто красят чёрной краской. Эффект от такого решения, конечно, есть, но незначительный, к тому же, краска может бликовать, а качество покрытия со временем ухудшается. Более дорогие технологичные модели коллекторов снабжены абсорберами с особым высокоселективным покрытием, которое не бликует, служит долго и очень хорошо поглощает солнечное излучение.

Но основные различия в конструкциях солнечных коллекторов заключаются в способах теплоизоляции. Плоский коллектор представляет собой прямоугольный металлический короб, закрытый сверху стеклом. Стенки и дно короба теплоизолированы — обычно минеральной ватой. Однако, такая изоляция несовершенна, потому что не исключает переноса тепла от абсорбера к стеклу посредством содержащегося внутри коллектора газа, да и минеральная вата тоже не исключает полностью теплопотери через корпус.

Поэтому, в вопросе сохранения тепла плоским коллектором важное значение имеет разница температур внутри коллектора и снаружи. Летом, когда воздух на улице хорошо прогрет, потери тепла малы, и коллектор почти всю энергию, полученную от солнца, направляет в систему. Но стоит уличной температуре снизиться, — и коллектор, который в межсезонье и зимой и так получает меньше тепла, начинает всё больше терять собранной энергии.

В результате, плоские коллекторы очень эффективны в конце весны и летом, но в холодную погоду собирают крайне мало тепла. Вакуумные трубчатые коллекторы обладают более совершенной теплоизоляцией. У них абсорберы расположены внутри стеклянных трубок, между стенками которых — вакуум. Перенос тепла газовой средой в таком коллекторе невозможен, ввиду отсутствия самого газа, как такового. Поэтому, теплопотери вакуумных коллекторов минимальны даже при сильных морозах.

Солнечный коллектор: открытый, вакуумный, плоский. Принцип работы

Солнечный коллектор это искусственное сооружение или устройство, предназначенное для поглощения солнечной радиации и преобразование ее в тепловую энергию, которую применяют для подогрева бытовой воды (система горячего водоснабжения).

Слово коллектор (англ. сollect ) переводится, в данном смысле как — собирать, собиратель .

В общем конструкция установки, которая включает в себя солнечный коллектор является сложной и состоит из:

  • датчика фиксации температуры в накопительном баке и солнечном коллекторе;
  • накопительного или расширительного бака;
  • циркуляционного насоса;
  • датчики температуры для подогрева воды при условии недостаточности нагрева от солнечного коллектора;
  • солнечный регулятор.

Данная установка должна иметь подключения к системе холодного и горячего водоснабжения (или к системе отопления), фото 1.

Принцип работы солнечного коллектора

Фото 1. Общая схема работы и подключения солнечного коллектора

Существуют разные виды солнечных коллекторов:

  1. Открытые солнечные коллекторы.
  2. Вакуумные солнечные коллекторы.
  3. Плоские солнечные коллекторы.

Открытые солнечные коллекторы

Открытые коллекторы – оснащены поверхностью из резины или пластика, которые имеют высокий коэффициент поглощения солнечных и световых лучей. В данном коллекторе его поверхность не покрывается стеклом, фото 2 .

Принцип работы солнечного коллектора

Фото 2. Солнечный коллектор открытого типа

Применяется в открытых гелиосистемах для нагрева воды в бассейнах и позволяет снизить расход газа на обогрев до 50…70%, что в наше время весьма существенно.

Коллектор открытого типа целесообразно использовать в теплых странах. В Украине рекомендуется применять только в южных регионах страны.

  • легкое оборудование;
  • простая конструкция и ее монтаж;
  • относительно низкая стоимость.
  • прямая зависимость производительности коллектора от температуры окружающей среды и от погоды (облачности, ветра);
  • применяется только для нагрева воды бассейнов и для летних душевых;
  • малый срок эксплуатации (1…3 года).
  • низкий КПД системы.

Вакуумные солнечные коллекторы

Вакуумный коллектор – является усовершенствуемым вариантом коллектора открытого типа, фото 3. Особенностью данного коллектора является использования вакуума, как высокоэффективного теплоизолятора. Вакуум находится между внешним стеклом и теплопоглощающей поверхностью коллектора. Такая конструкция позволяет существенно снизить теплопотери и снизить зависимость производительности коллектора от температуры окружающей среды и погоды (ветер, осадки, облачность). Повышение эффективности вакуумного коллектора связано также с его работай по принципу зеркального эффекта (фото 4 ), который заключается в выравнивании тепловой мощности коллектора в зависимости от высоты солнца.

Вакуумные коллекторы производятся следующих видов:

  • трубчатые – представляют собой герметичные вакуумные трубы;
  • плоские – представляют собой пластины, вакуум в которых поддерживается насосами.

Принцип работы солнечного коллектора

Фото 3. Вакуумные солнечные коллекторы

Принцип работы солнечного коллектора

Фото 4. Зеркальный эффект вакуумного трубчатого коллектора. Принцип работы

Трубчатые вакуумные коллекторы

Трубчатые коллекторы состоят из следующих элементов:

  • корпус-рама;
  • корпус теплообменника;
  • стеклянные вакуумные трубки.

В зависимости от конструкции теплового канала и стеклянных трубок трубчатые вакуумные коллекторы разделяются по следующим конструктивным особенностям:

  • по виду стеклянной трубки: коаксиальная или перьевая;
  • по виду теплового канала (производится с тепловой трубкой «нeat pipe» (термотрубка) и с прямоточной тепловой трубкой);

Коаксиальная стеклянная трубка сделана по типу термоса – две трубки различного диаметра вставленные друг в друга, между ними выкачан воздух и создан вакуум, фото 5.

Перьевая вакуумная стеклянная трубка – трубка с одной стенкой, а внутри трубки в среде вакуума установлена часть теплового канала и абсорбера, фото 6.

Принцип работы солнечного коллектора

Фото 5. Коаксиальная вакуумная трубка

Принцип работы солнечного коллектора

Фото 6. Перьевые трубки вакуумного трубчатого коллектора

Трубчатые вакуумные коллекторы по виду похожи на термос, и состоят из трубки в которую помещена трубка меньшего диаметра. Воздух между поверхностями трубок выкачан, т.е. создается вакуум, который является термоизолятором для минимизации теплопотерь. Внутренняя поверхность внутренней трубки покрыта высокоселективным слоем, от которого с помощью алюминиевых пластин происходит сбор количества принятого тепла и передача его медной U-образной или коаксиальной трубке с подогреваемой жидкостью.

Из фото 7 видно, что внутри алюминиевой пластины проходят две трубки: одна с нагретой жидкостью, а вторая – с холодной жидкостью. Все трубки с жидкостью (теплоносительные трубки) объедены в целую гидравлическую систему, фото 8 .

Цилиндрическая форма трубок позволяет по максимуму собирать солнечные лучи, которые в любое время дня и года принимают солнечные лучи перпендикулярно к оси трубки – это значительно повышает эффективность работы всей системы и позволяет даже при очень слабом солнечном освещении нагревать воду в системе горячего водоснабжения.

Принцип работы солнечного коллектора

Фото 7. Трубка вакуумного коллектора в разрезе

Принцип работы солнечного коллектора

Фото 8. Гидравлическая система коллектора

Выпускаются трубчатые вакуумные коллекторы различной конструкции. Кратко рассмотрим самые распространенные виды вакуумных трубчатых коллекторов:

  • вакуумный коллектор с прямой теплопередачей воде (термосифонная система);
  • вакуумный коллектор с прямой теплопередачей воде и встроенным в бак теплообменником;
  • вакуумный коллектор с термотрубками.

Вакуумный коллектор с прямой теплопередачей воде (термосифонная система)

Система коллекторных трубок соединена с накопительным баком, через который поступает вода непосредственно к вакуумным трубкам, фото 9. что является большим преимуществом, так как минимизируются теплопотери. Вода в трубках нагревается и поступает в теплообменник по принципу естественной конвекции, поэтому системный бак всегда располагается выше коллекторных трубок. Вода в баке, которая отдала тепло и охладилась, она естественным путем течет вниз в трубки.

Особенностью термосифонной системы является не только возможность аккумулировать определенное количество тепла, но и сохранять в баке определенное количество горячей воды некоторое время. Вакуумный коллектор с прямой теплопередачей воде широко применяется для начального нагрева воды, а затем основными системами вода подогревается до требуемой температуры.

Вакуумный коллектор с прямой теплопередачей воде считается дешевым и отличается простой конструкцией.

Недостатки вакуумного коллектора с прямой теплопередачей воде:

  1. Нерационально использовать солнечные коллекторы такого типа в тех регионах, где есть отрицательные температуры.
  2. Не допускается в системе коллекторов давления более чем 0,2 атм, так как теплоноситель имеет прямой контакт с трубкой. Таким образом, данный коллектор не может работать в под высоким давлением.
  3. Коллектор эффективно работает только при положительной температуре окружающей среды.

Принцип работы солнечного коллектора

Фото 9. Вакуумный коллектор с прямой теплопередачей воде (термосифонная система)

Вакуумный коллектор с прямой теплопередачей воде и встроенным в бак теплообменником

Прямоточный канал позволяет снизить потери нагретой жидкости на пути к теплообменнику, фото 10. т.е. непосредственная передача тепла теплообменнику (воде) без «посредников». При действии на трубку солнечных лучей жидкость закипает или просто нагревается, превращается в пар и переносит к теплообменнику тепловую энергию, который непосредственно находится в трубке. В теплообменнике пар конденсируется и возвращается обратно в каждую трубку коллектора. Такая система высокоэффективна и позволяет работать коллектору в экстремальных условиях, даже при температуре наружного воздуха -35°С.

Принцип работы солнечного коллектора

Фото 10. Вакуумный трубчатый коллектор с прямой теплопередачей воде и встроенным в бак теплообменником

Вакуумный коллектор с термотрубками

Коллектор оснащен вместо обычных вакуумных трубок более усовершенствованными термотрубками . которые представляют собой трубку из тонкостенной меди заполненную легкокипящей жидкостью. Коллектор состоит из набора термотрубок, при попадании солнечного света на трубки происходит кипение легкокипящей жидкости (например, иноргатик ) до температуры 250…380°С, ее пары поднимаясь в верхнюю часть трубки, которая является конденсатором отдают тепло и охлаждается до превращения в жидкость, а затем поступает снова в нижнюю часть термотрубок. Принцип работы представлен на фото 11 .

Принцип работы солнечного коллектора

Фото 11. Вакуумный коллектор с термотрубками. Термотрубка и ее принцип работы

Плоские вакуумные коллекторы

Вакуумный плоский коллектор отличается от обычного плоского коллектора наличием в середине системы вакуума для снижения теплопотерь, фото 12. Плоский вакуумный коллектор имеют высокую производительность по сравнению с другими плоскими коллекторами, но его распространение ограничивает то, что он очень дорогой. Также такой коллектор очень сложно устанавливать и эксплуатировать.

Принцип работы солнечного коллектора

Фото 12. Плоский вакуумный коллектор

  • высокий КПД системы на протяжении всего года, и даже зимой. По сравнению с другими типами коллекторов, трубчатый вакуумный коллектор на протяжении целого года производит на 30…40% количества тепла больше;
  • возможность работать при отрицательных температурах (не все виды);
  • некоторые производители выпускают трубчатые коллекторы с поверхностью из ударопрочного стекла, выдерживающего удар града или незначительного падения;
  • низкая парусность конструкции позволяет более надежно закрепить оборудование с меньшими усилием и затратами.
  • более ремонтопригодная система. При повреждении одной трубки ее относительно легко заменить, что совсем не возможно в плоских коллекторах;
  • возможность нагрева воды до температуры 130…200°С.
  • более высокая стоимость; по подсчетам производителей окупаемость системы коллектора составляет 1…5 лет;
  • большие габариты и тяжелый вес;
  • в пределах Украины производительность вакуумного коллектора в зимний период может снижаться за счет осадков в виде снега и инея;
  • низкий срок эксплуатации, система боится града (более свойственно продукции из Китая);
  • одной из главных поломок системы – недержание вакуума в системе (более свойственно продукции из Китая).

Область применения. Вакуумные солнечные коллекторы применяют для подогрева бытовой воды или в системе отопления. Вакуумный коллектор позволяет летом получать полностью горячею бытовую воду в избытке, а зимой коллектор покрывает только до 60% всего расхода горячей воды. При заполнении теплоносителя, который не замерзает, свободно можно использовать коллектор для подогрева воды и в морозы при температуре -5…-10°С.

Плоские солнечные коллекторы

Плоский солнечный коллектор это один из самых распространенных видов солнечных коллекторов, которые работают по принципу парникового эффекта, а именно то, что сквозь стекло практически полностью все солнечные лучи проходят и попадают на поверхность солнечного коллектора (фото 13 ).

Для плоского солнечного коллектора применяется обычное или специальное закаленное стекло с коэффициентом пропускания спектрального интервала 0,4…1,8 мкм и достигает 95%, а в свою очередь в нижней части коллектора используется теплопоглощающее покрытие с эффективностью 90% (высокоселективное покрытие). Поверхность стекла применяют матовую, которая больше поглощает солнечных лучей, чем глянцевая поверхность.

Принцип работы солнечного коллектора

Фото 13. Плоский солнечный коллектор

Плоский солнечный коллектор состоит из следующих основных элементов:

  • корпус;
  • абсорбер и теплопоглощающее покрытие;
  • прозрачное защитное покрытие (обычно стекло);
  • термоизолирующее покрытие (обычно минеральная вата в комбинации со светоотражающей алюминиевой фольгой);
  • элементы крепления оборудования.

Корпус плоского солнечного коллектора обычно изготовляют из листового или анодированного алюминия, и предназначенный для защиты главного оборудования от внешнего воздействия и крепления к основанию скатной кровли или реже к стене дома.

Абсорбер – основной элемент плоского коллектора. Абсорбер представляет собой обычно медную пластину с теплопоглощающим покрытием. К адсорберу припаян проточный трубопровод, для отвода тепла, который может располагаться по двум схемам: «меандр» и «арфа». Абсорбер помещается в стеклянный корпус. Одна поверхность, что покрыта теплопоглощающим слоем принимает солнечное излучение, а вторая сторона (противоположная) для снижения теплопотерь утепляется специальным материалом. Отвод теплоты от теплопоглощающего покрытия осуществляется через медный или алюминиевый теплообменник, внутри которого в качестве теплоносителя помещена вода или антифриз.

В разных моделях плоских солнечных коллекторах могут быть:

  • абсорбер из меди лирообразной формы, поверхность которого покрыта высокоселективным черным хромом, что дает возможность к параллельному подключению коллекторов, фото 14а ;
  • абсорбер из меди, меандровый с высокоселективным покрытием «Sunselect», фото 14б;
  • абсорбер из меди двойной лирообразной формы с высокоселективным покрытием «Eta plus», фото 14в.

Принцип работы солнечного коллектора

Фото 14. Устройство плоских коллекторов: а) абсорбер из меди лирообразной формы; абсорбер из меди, меандровый; в) абсорбер из меди двойной лирообразной формы

В плоских солнечных коллекторах используют следующие виды стекол. фото 15 :

  • обычное стекло;
  • специальное закаленное стекло. Особенностью является повышенная прочность на удар и высокая рассеянность.
  • антирефлексное стекло – это стекло, на обеих поверхностях которого нанесен специальный слой элиминирующий отражение солнечного света и поэтому максимальное количество этого излучения попадает на абсорбер (до 96%);
  • полярное стекло (самоочищающееся стекло); поверхность такого стекла покрыта специальным слоем диоксид титана, что приводит к выгоранию на солнце всего органического мусора, который оседает на поверхность коллектора, а дождь смывает его остатки, оставляя стекло чистым.

В более дорогих версиях плоского солнечного коллектора вместо обычного защитного стекла применяется стекло из поликарбоната, которое также хорошо пропускает солнечные лучи, но является более стойким к ударам.

Принцип работы солнечного коллектора

Фото 15. Поглощающая способность и отражение солнечных лучей: антирефлексное стекло (слева) и специальное закаленное стекло (справа)

Очень важно, чтобы плоские коллекторы имели хорошую теплоизоляцию, которая снижает потери тепла. Обычно теплоизоляция плоских коллекторов устанавливается толщиной 20…60 мм изготовленной из минеральной ваты и светоотражающей алюминиевой пленки.

Для нашего региона, летом в Украине максимальная производительность плоского солнечного коллектора составляет 50 л (температура 50…60°С) за 1 день с 1 м 2 коллектора.

Плюсы плоских солнечных коллекторов:

  1. Высокая производительность (КПД более 50%).
  2. Простая и надежная конструкция.
  3. Высокая долговечность оборудования (более 50 лет; производитель обычно дает гарантию на 10 лет эксплуатации).
  4. Возможность работы круглый год.
  5. Эффективно работают при необходимости нагрева воды выше на 20…40°С от температуры окружающей среды.

Минусы плоских солнечных коллекторов:

  1. Низкая производительность в зимнее время и в неблагоприятную для коллектора погоду (по сравнению с вакуумным коллектором).
  2. Максимальна эффективность плоского коллектора достигается только при попадании солнечных лучей под прямым углом, т.е. в полдень.
  3. Требует периодической очистки от пыли, грязи, снега.
  4. При повреждении коллектора, необходимо проводить полную замену устройства, а не отдельного элемента, как это происходит в трубчатых вакуумных коллекторах.

Как уже выше отмечалось, что плоские коллекторы устанавливают обычно на кровлю или на стены домов. Оптимальным решение является установка солнечного коллектора на стадии строительства дома, что позволяет существенно снизить расход денежных средств на кровельные материалы.

В данном случае плоские коллекторы просто встраивают в каркас кровли, фото 16 и их можно использовать в комплексе с солнечными батареями и мансардными окнами (с далека трудно отличить это окно или коллектор). Такой конструкцией коллекторов, размер которых совпадает с основными типовыми размерами мансардных окон, занимаются такие производители как ROTO (Германия) и VELUX (Дания).

Принцип работы солнечного коллектора

Фото 16. Встроенный плоский коллектор на кровле

В табл. 1 приведены для сравнения самые главные преимущества и недостатки вакуумного и плоского коллекторов.

Сравнительная таблица преимуществ и недостатков трубчатого вакуумного и плоского коллекторов

На фото 17 представлен график сравнения тепловой эффективности разных солнечных коллекторов.

Принцип работы солнечного коллектора

Фото 17. График сравнения тепловой эффективности разных солнечных коллекторов при солнечном излучении мощностью 600 Вт/м2: 1 – вакуумный коллектор (трубчатого типа); 2 – плоский солнечный коллектор (селективное покрытие); 3 – солнечный коллектор открытого типа

Параметры, по которым определяют эффективность работы теплопоглощающего покрытия:

а – коэффициент поглощения (адсорбции) – это отношение количества поглощающей энергии ко всей «приходящей» энергии. Нормальное значение коэффициента а лежит в пределах 0,8…0,98;

е – коэффициент излучения (эмиссии) – это отношения количества излученной энергии к поглощенной. Нормальное значение е лежит в пределах 0,95…1,02, что зависит от вида покрытия;

а/е – коэффициент селективности. Чем выше значение коэффициента селективности, тем лучшая поглощающая способность теплопоглощающей поверхности.

Публикацию подготовил – эксперт GIDproekt

Конев Александр Анатольевич

Принцип работы солнечного коллектора

Если у вас нет времени почитать наши публикации прямо сейчас, подпишитесь на обновления, и мы будем высылать извещения о новых заметках вам на почту

Как работают солнечные коллекторы различных видов

Принцип работы солнечных коллекторов основан на трансформации лучистой энергии солнца в тепловую энергию. Происходит это путем нагревания циркулирующего в коллекторе теплоносителя (чаще всего воды, иногда – антифриза) и последующей передачи накопленного тепла. Иными словами, солнечный коллектор работает как своего рода водонагреватель, что и определило его сферу применения (ГВС частных домов, отопление).

Общий принцип водонагрева

Существуют различные виды гелиоколлекторов, однако в водонагревательных установках все они работают по одной схеме. Солнечные лучи нагревают теплоноситель, который по тонким трубкам поступает в заполненный водой бак. Трубки с теплоносителем проходят через весь внутренний объем бака и нагревают находящуюся в нем воду. В дальнейшем эта вода расходуется на бытовые нужды (отопление, ГВС и т.д.). Температура воды в баке контролируется специальными датчиками, при ее охлаждении ниже заданного минимума автоматически включается резервный подогрев (обычно – газовый или электрокотел).

Принцип работы солнечного коллектора

Такова общая схема работы всех солнечных водонагревательных установок. Что же касается работы плоских и вакуумных коллекторов, то, несмотря на единый принцип действия (нагрев теплоносителя от солнца и последующую отдачу тепла), в их работе много различий.

Плоские коллекторы

Плоский солнечный коллектор нагревает теплоноситель при помощи пластинчатого абсорбера. Устроен он довольно просто. По сути, это пластина теплоемкого металла, выкрашенная сверху в черный цвет специальной краской. К нижней поверхности пластины плотно прилегает (приваривается) змеевидная трубка, по которой и циркулирует жидкость.

Принцип работы солнечного коллектора

Черная селективная краска обеспечивает максимальное поглощение солнечных лучей, причем их отражение практически равно нулю. Поглощенные лучи прогревают теплоноситель под абсорбером, он, в свою очередь, подается далее в систему. Для минимизации теплопотерь применяются теплоизоляция абсорбера от корпуса коллектора и закаленное стекло, почти не содержащее окислов железа. Оно устанавливается над абсорбером и выполняет функцию верхней крышки корпуса. Кроме того, использование подобного стекла позволяет создать своеобразный «эффект парника», что еще больше увеличивает прогрев абсорбера, а значит, и температуру теплоносителя.

Вакуумные коллекторы

Принцип работы вакуумных коллекторов иной. Объясняется это прежде всего разницей в конструкции. Главным рабочим элементом в вакуумных моделях является не пластина абсорбера, а система вакуумированных трубок и теплосборник. Причем вариантов конструкций таких трубок несколько.

Тем не менее, несмотря на конструктивные различия, общая схема действия таких трубок фактически одинакова. Стеклянная поверхность поглощает максимум солнечных лучей благодаря специальному высокоселективному покрытию. Энергия солнца нагревает внутренний теплоноситель, а вакуумная прослойка ликвидирует теплопотери, так как вакуум – лучший изолятор. Через теплосборник аккумулированное тепло поступает далее в систему и используется для нагрева воды в баке-накопителе.

В целом коллектор этого типа обеспечивает более высокую производительность по сравнению с плоским аналогом.

Вакуумные трубки

Устройство классической вакуумированной трубки довольно просто. Она представляет собой двухстенную стеклянную колбу, между стенками которой создан вакуум. Внутри расположен медный сердечник (тепловой канал). Такая трубка называется «коаксиальной». Еще один вид — так называемые «перьевые трубки», одностенные колбы с вакуумом в самом тепловом канале.

Принцип работы вакуумной трубки зависит от особенностей строения ее теплового канала и от типа самой колбы. Каналы же, как и колбы, бывают двух видов, прямоточные и типа heat pipe.

Действие прямоточных каналов основано на непосредственном протекании теплоносителя через U-образную медную трубку. Охлажденная жидкость попадает в трубку из теплосборника, проходит через нее, нагревается и возвращается в теплосборник. Там она отдает накопленное тепло основному теплоносителю и возвращается в трубку.

Принцип работы солнечного коллектора

Трубка heat pipe работает несколько иначе. Принцип ее работы основан на переносе тепла посредством легко испаряющейся жидкости, заключенной в тепловом канале. Сам канал (трубка) выполняется из теплоемкого металла (алюминий, медь). Солнечный свет нагревает жидкость, она испаряется из нижнего конца трубки и конденсируется в теплосборнике. Конденсат стекает вниз, где его вновь разогревает солнечный свет. Основной теплоноситель забирает тепло из теплосборника и передает его через коллектор дальше в систему.

Принцип работы солнечного коллектора

Теплосборник

Помимо трубок, вакуумный солнечный коллектор оснащен теплосборником, которые необходим для передачи тепла от трубок к теплоносителю. Размещается теплосборник в верхней части агрегата. Принцип его работы следующий. Медный сердечник передает накопленную энергию основному теплоносителю, циркулирующему в замкнутом круге «теплообменник бака – коллектор». Циркуляцию обеспечивает специальный небольшой насос. Причем если температура теплоносителя упадет ниже определенного минимума (например, ночью), то управляющая автоматика водонагревательной системы отключит насос. Таким образом предотвращается обратный прогрев, при котором теплоноситель будет забирать тепло горячей воды в накопительном баке.

Воздушные коллекторы

Солнечный коллектор воздушного типа гораздо менее распространен. Применяется он не для подогрева воды, а для нагрева и кондиционирования воздуха. Роль теплоносителя в нем играет собственно воздух, нагреваемый солнечными лучами. По сути, данный коллектор представляет собой ребристую металлическую панель, выкрашенную в черный цвет. Принцип работы его основан на естественной или принудительной подаче в помещения воздуха, который прогревается под панелью под действием солнечных лучей.

Источники: http://xexe.club/202722-chto-takoe-solnechnyy-kollektor-i-kak-on-rabotaet.html, http://gidproekt.com/solnechnyj-kollektor-otkrytyj-vakuumnyj-ploskij-princip-raboty.html, http://solarb.ru/kak-rabotayut-solnechnye-kollektory-razlichnykh-vidov

Как вам статья?

Рейтинг
( Пока оценок нет )
Всё об отоплении
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector