- Расчет отопления по площади помещения — подробный разбор методов
- Простые вычисления по площади
- Рассмотрим метод вычислений для комнат с высокими потолками
- Дополнительные параметры, которые нужно учесть
- Специфика и другие особенности
- Климатические зоны тоже важны
- Расчет количества радиаторов отопления по площади и объему помещения
- Расчет по площади
- Методика расчета по объему помещения
- Корректировка результатов
- Стены и потолок
- Высота потолков
- Климатические условия
- Расчет количества секций радиаторов
- Зависимость от температурного режима системы отопления
- Расчет отопления по площади помещения
- Простейшие приемы расчета
- Проведение расчетов необходимой тепловой мощности с учетом особенностей помещений
- Общие принципы и формула расчета
- Калькулятор расчета требуемой тепловой мощности отопления по помещениям
- Оценка степени утепленности элемента дома и требуемой толщины термоизоляции
- Общий принцип расчета
- Калькулятор оценки необходимости дополнительного утепления
- Видео: пример расчета системы отопления с помощью специальной прикладной программы
Расчет отопления по площади помещения — подробный разбор методов
Если у вас возникла необходимость замены старых, вышедших из строя радиаторов, или же вы собираетесь произвести установку новой системы в строящемся доме, следует знать, как произвести расчет отопления по площади помещения.
Чтобы работа системы была эффективной, следует точно определить количество секций устанавливаемых радиаторов, чтобы теплоотдача и прогревание были оптимальными.
Если секций будет недостаточно, то комната никогда не прогреется должным образом, а большое их количество приведет к неэкономному и чрезмерному расходованию тепла, и соответственно пагубно скажется на ваших финансах и бютжете. Потребности помещений стандартного типа и планировки можно определить с помощью довольно простых расчетов, а чтобы добиться большей точности, необходимо обязательно учитывать и некоторые дополнительные параметры и особенности.
Простые вычисления по площади
Вычислить величину батарей отопления для определенного помещения можно, ориентируясь на его площадь. Это самый простой способ – использовать сантехнические нормы, которые предписывают, что тепловой мощности 100 Вт в час нужно для обогрева 1 кв.м. Надо помнить, что этот метод используется для помещений, у которых потолки стандартной высоты (2,5-2,7 метра), а результат получается несколько завышенным.
К тому же он не учитывает таких особенностей, как:
- число окон и тип стеклопакетов на них;
- количество в комнате наружных стен;
- толщина стен здания и из какого материала они состоят;
- тип и толщина использованного утеплителя;
- диапазон температур в данной климатической зоне.
Тепло, которое для обогрева комнаты должны давать радиаторы: площадь следует умножить на тепловую мощность (100 Вт). К примеру, для комнаты в 18 кв.м требуется такая мощность батареи отопления:
18 кв.м х 100 Вт = 1800 Вт
То есть, в час для обогрева 18-ти квадратных метров необходимо 1,8 кВт мощности. Этот результат надо поделить на количество тепла, которое в час выделяет секция отопительного радиатора. Если данные в его паспорте указывают, что это составляет 170 Вт, то следующий этап вычислений выглядит так:
1800 Вт / 170 Вт = 10,59
Это число надо округлить до целого (обычно округляется в большую сторону) – получится 11. То есть, чтобы в комнате температура в отопительный сезон была оптимальной, необходимо установить радиатор отопления с 11-ю секциями.
Такой метод подходит только для вычисления величины батареи в помещениях с центральным отоплением, где температура теплоносителя не выше 70 градусов Цельсия.
Есть и более простой способ, который можно применять для обычных условий квартир панельных домов. В этом приблизительном расчете учитывается, что для обогрева 1,8 кв.м площади нужна одна секция. Другими словами, площадь помещения надо разделить на 1,8. Например, при площади 25 кв.м необходимо 14 частей:
25 кв.м / 1,8 кв.м = 13,89
Но такой метод расчета неприемлем для радиатора пониженной или повышенной мощности (когда средняя отдача одной секции варьируется в пределах от 120 до 200 Вт).
Рассмотрим метод вычислений для комнат с высокими потолками
Однако расчет отопления по площади не позволяет верно определить количество секций для комнат с потолками выше 3 метров. В этом случае надо применять формулу, учитывающую объем помещения. Для обогрева каждого кубического метра объема по рекомендациям СНИП необходим 41 Вт тепла. Так, для комнаты с потолками высотой 3 м и площадью 24 кв.м, расчет будет следующим:
24 кв.м х 3 м = 72 куб.м (объем комнаты).
72 куб.м х 41 Вт = 2952 Вт (мощность батареи для обогрева помещения).
Теперь следует узнать количество секций. В случае, если в документации радиатора указано, что теплоотдача одной его части в час составляет 180 Вт, надо разделить на это число найденную мощность батареи:
2952 Вт / 180 Вт = 16,4
Это число округляется до целого – получается, 17 секций, чтобы обогреть комнату объемом 72 куб.м.
Путём не сложных вычислений можно с лёгкостью определить нужные вам данные.
Дополнительные параметры, которые нужно учесть
Произведя примерный расчет количества секций радиаторов отопления для своей квартиры, не забудьте его откорректировать, приняв во внимание особенности помещения. Их нужно учитывать следующим образом:
- для угловой комнаты (две стены выходят на улицу) с одним окном мощность радиатора надо увеличить на 20%, а при двух окнах – на 30%;
- если радиатор монтируется в нише под окном, его теплоотдача снизится, это компенсируется увеличением мощности на 5%;
- на 10% следует увеличить, если окна выходят на северную либо северо-восточную сторону;
- экран, для красоты закрывающий радиаторы, «крадет» 15% их теплоотдачи, которые также надо учесть при расчете.
В самом начале следует рассчитать общее значение необходимой для помещения тепловой мощности, учитывая все наличествующие параметры и факторы. И лишь затем разделить это значение на количество тепла, которое выделяет в час одна секция. Результат при дробном значении, как правило, округляется до целого в большую сторону.
Специфика и другие особенности
Также возможна и другая специфика у помещений, для которых делается расчет, не все же они похожи и совершенно одинаковы. Это могут быть такие показатели как:
- температура теплоносителя меньше 70 градусов – число частей соответственно предстоит увеличить;
- отсутствие двери в проеме между двумя помещениями. Тогда требуется подсчитать общую площадь обоих помещений, чтобы вычислить количество радиаторов для оптимального обогрева;
- установленные на окнах стеклопакеты препятствуют потере тепла, следовательно, можно монтировать меньше секций батареи.
При замене старых чугунных батарей. которые обеспечивали нормальную температуру в комнате, на новые алюминиевые или биметаллические, калькуляция весьма проста. Умножитьте теплоотдачу одной чугунной секции (в среднем 150 Вт). Результат разделите на количество тепла одной новой части.
Климатические зоны тоже важны
Не для кого ни секрет, что в разных климатических зонах имеется разная потребность в обогреве, поэтому при проектировании проекта необходимо учитывать и эти показатели.
Климатические зоны также имеют свои коэффициенты:
- средняя полоса России имеет коэффициент 1,00, поэтому он не используется;
- северные и восточные регионы: 1,6;
- южные полосы: 0,7-0,9 (учитываются минимальные и среднегодовые температуры в регионе).
Данный коэффициент необходимо умножить на общую тепловую мощность, а полученный результат разделить на теплоотдачу одной части.
Таким образом, расчет отопления по площади особых трудностей не представляет. Достаточно немного посидеть, разобраться и спокойно посчитать. С его помощью каждый владелец квартиры или дома может легко определить величину радиатора, который следует установить в комнате, кухне, ванной или в любом другом месте.
Если вы сомневаетесь в своих силах и знаниях — доверьте монтаж системы профессионалам. Лучше заплатить один раз профессионалам, чем сделать неправильно, демонтировать и повторно приступить к работе. Или же не сделать ничего вообще.
В продолжение темы: качественные межкомнатные двери www.dveri-tmk.ru помогут сохранить тепло в вашем доме или квартире. И упростить расчёты по площади отопления.
Расчет количества радиаторов отопления по площади и объему помещения
При замене батарей или переходе на индивидуальное отопление в квартире встает вопрос о том, как рассчитать количество радиаторов отопления и число секций приборов. Если мощность батарей окажется недостаточной, в холодное время года в квартире будет прохладно. Избыточное количество секций не только ведет к ненужным переплатам – при системе отопления с однотрубной разводкой жильцы нижних этажей останутся без тепла. Рассчитать оптимальную мощность и количество радиаторов можно, опираясь на площадь или объем комнаты, учитывая при этом особенности помещения и специфику разных видов батарей .
Расчет по площади
Наиболее распространенной и простой методикой является способ расчета мощности приборов, требуемой для обогрева, по площади обогреваемого помещения. Согласно усредненной норме, на отопление 1 кв. метр площади требуется 100 Вт тепловой мощности. В качестве примера рассмотрим комнату, имеющую площадь 15 кв. метров. Согласно данному методу, для ее обогрева потребуется 1500 Вт тепловой энергии.
При использовании данной методики нужно учесть несколько важных моментов:
- норма в 100 Вт на 1 кв. метр площади относится к средней климатической полосе, в южных регионах для обогрева 1 кв. метра помещения требуется меньшая мощность – от 60 до 90 Вт;
- для областей с суровым климатом и очень холодной зимой на обогрев 1 кв. метра требуется от 150 до 200 Вт;
- метод подходит для помещений со стандартной высотой потолков, не превышающей 3 метра;
- способ не учитывает потери тепла, которые будут зависеть от расположения квартиры, количества окон, качества утепления, материала стен.
Методика расчета по объему помещения
Способ расчетов с учетом объема потолка будет более точным: он учитывает высоту потолков в квартире и материал, из которого сделаны наружные стены. Последовательность вычислений будет следующей:
- Определяется объем помещения, для этого площадь комнаты умножается на высоту потолка. Для комнаты площадью 15 кв. м. и высотой потолка 2,7 м он будет равен 40,5 кубометрам.
- В зависимости от материала стен на обогрев одного кубометра воздуха тратится разное количество энергии. По нормам СНиП для квартиры в кирпичном доме этот показатель равен 34 Вт, для панельного дома – 41 Вт. Значит, полученный объем нужно умножить на 34 или на 41 Вт. Тогда для кирпичного здания на обогрев комнаты в 15 квадратов потребуется 1377 Вт (40,5*34), для панельного – 1660, 5 Вт (40,5*41).
Корректировка результатов
Любой из выбранных способов покажет лишь приблизительный результат, если не будут учитываться все факторы, влияющие на уменьшение или увеличение теплопотерь. Для точного расчета необходимо полученное значение мощности радиаторов умножить на приведенные ниже коэффициенты, среди которых нужно выбрать подходящие.
В зависимости от размеров окон и качества утепления через них помещение может терять 15–35% тепла. Значит, для вычислений мы будем использовать два связанных с окнами коэффициента.
Соотношение площади окон и пола в комнате:
- для окна с трехкамерным стеклопакетом или двухкамерным с аргоном – 0,85;
- для окна с обычным двухкамерным стеклопакетом – 1,0;
- для рам с обычным двойным остеклением – 1,27.
Стены и потолок
Потери тепла зависят от количества наружных стен, качества теплоизоляции и от того, какое помещение расположено над квартирой. Для учета этих факторов будет использоваться еще 3 коэффициента.
Число наружных стен:
- нет наружных стен, потери тепла отсутствуют – коэффициент 1,0;
- одна наружная стена – 1,1;
- две – 1,2;
- три – 1,3.
- нормальная теплоизоляция (стена толщиной в 2 кирпича или слой утеплителя) – 1,0;
- высокая степень теплоизоляции – 0,8;
- низкая – 1,27.
Учет типа вышерасположенного помещения:
- отапливаемая квартира – 0,8;
- отапливаемый чердак – 0,9;
- холодный чердак – 1,0.
Высота потолков
Если вы пользовались способом расчета по площади для комнаты с нестандартной высотой стен, то для уточнения результата придется ее учесть. Коэффициент можно узнать следующим образом: имеющуюся высоту потолка разделить на стандартную высоту, которая равна 2,7 метра. Таким образом мы получим следующие цифры:
Климатические условия
Последний коэффициент учитывает температуру воздуха на улице в зимнее время. Отталкиваться будем от средней температуры в наиболее холодную неделю года.
Расчет количества секций радиаторов
После того как нам стала известна мощность, требуемая для обогрева помещения, мы можем произвести расчет батарей отопления.
Для того чтобы рассчитать количество секций радиатора, нужно поделить рассчитанную общую мощность на мощность одной секции прибора. Для проведения вычислений можно пользоваться среднестатистическими показателями для разных типов радиаторов со стандартным осевым расстоянием, равным 50 см:
- для чугунных батарей примерная мощность одной секции составляет 160 Вт;
- для биметаллических – 180 Вт;
- для алюминиевых – 200 Вт.
Справка: осевое расстояние радиатора – это высота между центрами отверстий, через которые подается и отводится теплоноситель.
Для примера определим требуемое число секций биметаллического радиатора для комнаты площадью 15 кв. м. Предположим, что вы считали мощность простейшим способом по площади помещения. Делим требуемые для ее обогрева 1500 Вт мощности на 180 Вт. Полученное число 8,3 округляем – необходимое число секций биметаллического радиатора равно 8.
Важно! Если вы решили выбрать батареи нестандартного размера, узнайте мощность одной секции из паспорта прибора.
Зависимость от температурного режима системы отопления
Мощность радиаторов указывается для системы с высокотемпературным тепловым режимом. Если система отопления вашего дома работает в среднетемпературном или низкотемпературном тепловом режиме, для подбора батарей с нужным количеством секций придется произвести дополнительные расчеты.
Для начала определим тепловой напор системы, который представляет собой разницу между средней температурой воздуха и батарей. За температуру приборов отопления берется среднее арифметическое от значений температуры подачи и отвода теплоносителя.
- Высокотемпературный режим: 90/70/20 (температура подачи — 90 °C, обратки —70 °C, за среднюю температуру в помещении принимается значение 20 °C). Тепловой напор рассчитаем так: (90 + 70) / 2 – 20 = 60 °С;
- Среднетемпературный: 75/65/20, тепловой напор – 50 °С.
- Низкотемпературный: 55/45/20, тепловой напор – 30 °С.
Чтобы узнать, сколько секций батареи вам понадобится для систем с тепловым напором 50 и 30, нужно умножить общую мощность на паспортный напор радиатора, а затем разделить на имеющийся тепловой напор. Для комнаты 15 кв.м. потребуется 15 секций алюминиевых радиаторов, 17 – биметаллических и 19 – чугунных батарей.
Для отопительной системы с низкотемпературным режимом вам потребуется в 2 раза больше секций.
Расчет отопления по площади помещения
Создавать систему отопления в собственном доме или даже в городской квартире – чрезвычайно ответственное занятие. Будет совершенно неразумным при этом приобретать котельное оборудование, как говорится, «на глазок», то есть без учета всех особенностей жилья. В этом вполне не исключено попадание в две крайности: или мощности котла будет недостаточно – оборудование станет работать «на полную катушку», без пауз, но так и не давать ожидаемого результата, либо, наоборот, будет приобретен излишне дорогой прибор, возможности которого останутся совершенно невостребованными.
Расчет отопления по площади помещения
Но и это еще не все. Мало правильно приобрести необходимый котел отопления – очень важно оптимально подобрать и грамотно расположить по помещениям приборы теплообмена – радиаторы, конвекторы или «теплые полы». И опять, полагаться только лишь на свою интуицию или «добрые советы» соседей – не самый разумный вариант. Одним словом, без определенных расчетов – не обойтись.
Конечно, в идеале, подобные теплотехнические вычисления должны проводить соответствующие специалисты, но это часто стоит немалых денег. А неужели неинтересно попытаться выполнить это самостоятельно? В настоящей публикации будет подробно показано, как выполняется расчет отопления по площади помещения, с учетом многих важных нюансов. Методику нельзя назвать совершенно «безгрешной», однако, она все же позволяет получить результат с вполне приемлемой степенью точности.
Простейшие приемы расчета
Для того чтобы система отопления создавала в холодное время года комфортные условия проживания, она должна справляться с двумя основными задачами. Эти функции тесно связаны между собой, и разделение их – весьма условно.
- Первое – это поддержание оптимального уровня температуры воздуха во всем объеме отапливаемого помещения. Безусловно, по высоте уровень температуры может несколько изменяться, но этот перепад не должен быть значительным. Вполне комфортными условиями считается усредненный показатель в +20 °С – именно такая температура, как правило, принимается за исходную в теплотехнических расчетах.
Иными словами, система отопления должна быть способной прогреть определенный объем воздуха.
Если уж подходить с полной точностью, то для отдельных помещений в жилых домах установлены стандарты необходимого микроклимата – они определены ГОСТ 30494-96. Выдержка из этого документа – в размещенной ниже таблице:
Температура воздуха, °С
- Второе – компенсирование потерь тепла через элементы конструкции здания.
Самый главный «противник» системы отопления — это теплопотери через строительные конструкции
Увы, теплопотери – это самый серьезный «соперник» любой системы отопления. Их можно свести к определенному минимуму, но даже при самой качественной термоизоляции полностью избавиться от них пока не получается. Утечки тепловой энергии идут по всем направлениям – примерное распределение их показано в таблице:
Элемент конструкции здания
Примерное значение теплопотерь
Фундамент, полы по грунту или над неотапливаемыми подвальными (цокольными) помещениями
«Мостики холода» через плохо изолированные стыки строительных конструкций
Места ввода инженерных коммуникаций (канализация, водопровод, газовые трубы, электрокабели и т.п.)
Внешние стены, в зависимости от степени утепленности
Некачественные окна и внешние двери
порядка 20÷25%, из них около 10% — через негерметизированные стыки между коробками и стеной, и за счет проветривания
Вентиляция и дымоход
Естественно, чтобы справиться с такими задачами, система отопления должна обладать определенной тепловой мощностью, причем этот потенциал не только должен соответствовать общим потребностям здания (квартиры), но и быть правильно распределенным по помещениям, в соответствии с их площадью и целым рядом других важных факторов.
Обычно расчет и ведется в направлении «от малого к большому». Проще говоря, просчитывается потребное количество тепловой энергии для каждого отапливаемого помещения, полученные значения суммируются, добавляется примерно 10% запаса (чтобы оборудование не работало на пределе своих возможностей) – и результат покажет, какой мощности необходим котел отопления. А значения по каждой комнате станут отправной точкой для подсчета необходимого количества радиаторов.
Самый упрощённый и наиболее часто применяемый в непрофессиональной среде метод – принять норму 100 Вт тепловой энергии на каждый квадратный метр площади:
Самый примитивный способ подсчета — соотношение 100 Вт/м²
Q – необходимая тепловая мощность для помещения;
S – площадь помещения (м²);
100 — удельная мощность на единицу площади (Вт/м²).
Например, комната 3.2 × 5,5 м
Способ, очевидно, очень простой, но весьма несовершенный. Стоит сразу оговориться, что он условно применим только при стандартной высоте потолков – примерно 2.7 м (допустимо – в диапазоне от 2.5 до 3.0 м). С этой точки зрения, более точным станет расчет не от площади, а от объема помещения.
Расчет тепловой мощности от объема помещения
Понятно, что в этом случае значение удельной мощности рассчитано на кубический метр. Его принимают равным 41 Вт/м³ для железобетонного панельного дома, или 34 Вт/м³ — в кирпичном или выполненном из других материалов.
41 или 34 – удельная мощность на единицу объема (Вт/м³).
Например, та же комната, в панельном доме, с высотой потолков в 3.2 м:
Результат получается более точным, так как уже учитывает не только все линейные размеры помещения, но даже, в определенной степени, и особенности стен.
Но все же до настоящей точности он еще далек – многие нюансы оказываются «за скобками». Как выполнить более приближенные к реальным условиям расчеты – в следующем разделе публикации.
Проведение расчетов необходимой тепловой мощности с учетом особенностей помещений
Рассмотренные выше алгоритмы расчетов бывают полезны для первоначальной «прикидки», но вот полагаться на них полностью все же следует с очень большой осторожностью. Даже человеку, который ничего не понимает в строительной теплотехнике, наверняка могут показаться сомнительными указанные усредненные значения – не могут же они быть равными, скажем, для Краснодарского края и для Архангельской области. Кроме того, комната — комнате рознь: одна расположена на углу дома, то есть имеет две внешних стенки, а другая с трех сторон защищена от теплопотерь другими помещениями. Кроме того, в комнате может быть одно или несколько окон, как маленьких, так и весьма габаритных, порой – даже панорамного типа. Да и сами окна могут отличаться материалом изготовления и другими особенностями конструкции. И это далеко не полный перечень – просто такие особенности видны даже «невооруженным глазом».
Одним словом, нюансов, влияющих на теплопотери каждого конкретного помещения – достаточно много, и лучше не полениться, а провести более тщательный расчет. Поверьте, по предлагаемой в статье методике это будет сделать не так сложно.
Общие принципы и формула расчета
В основу расчетов будет положено все то же соотношение: 100 Вт на 1 квадратный метр. Но вот только сама формула «обрастает» немалым количеством разнообразных поправочных коэффициентов.
Q = (S × 100) × a × b× c × d × e × f × g × h × i × j × k × l × m
Латинские буквы, обозначающие коэффициенты, взяты совершенно произвольно, в алфавитном порядке, и не имеют отношения к каким-либо стандартно принятым в физике величинам. О значении каждого коэффициента будет рассказано отдельно.
- «а» — коэффициент, учитывающий количество внешних стен в конкретной комнате.
Очевидно, что чем больше в помещении внешних стен, тем больше площадь, через которую происходит тепловые потери. Кроме того, наличие двух и более внешних стен означает еще и углы – чрезвычайно уязвимые места с точки зрения образования «мостиков холода». Коэффициент «а» внесет поправку на эту специфическую особенность комнаты.
Коэффициент принимают равным:
— внешних стен нет (внутреннее помещение): а = 0,8 ;
- «b» — коэффициент, учитывающий расположение внешних стен помещения относительно сторон света.
На количество теплопотерь через стены влияет их расположение относительно сторон света
Даже в самые холодные зимние дни солнечная энергия все же оказывает влияние на температурный баланс в здании. Вполне естественно, что та сторона дома, которая обращена на юг, получает определенный нагрев от солнечных лучей, и теплопотери через нее ниже.
А вот стены и окна, обращённые на север, Солнца «не видят» никогда. Восточная часть дома, хотя и «прихватывает» утренние солнечные лучи, какого-либо действенного нагрева от них все же не получает.
Исходя из этого, вводим коэффициент «b»:
— внешние стены комнаты смотрят на Север или Восток. b = 1,1 ;
— внешние стены помещения ориентированы на Юг или Запад. b = 1,0 .
- «с» — коэффициент, учитывающий расположение помещения относительно зимней «розы ветров»
Возможно, эта поправка не столь обязательна для домов, расположенных на защищенных от ветров участках. Но иногда преобладающие зимние ветры способны внести свои «жесткие коррективы» в тепловой баланс здания. Естественно, что наветренная сторона, то есть «подставленная» ветру, будет терять значительно больше тела, по сравнению с подветренной, противоположной.
Существенные коррективы могут внести преобладающие зимние ветры
По результатам многолетних метеонаблюдений в любом регионе составляется так называемая «роза ветров» — графическая схема, показывающая преобладающие направления ветра в зимнее и летнее время года. Эту информацию можно получить в местной гидрометеослужбе. Впрочем, многие жители и сами, без метеорологов, прекрасно знают, откуда преимущественно дуют ветра зимой, и с какой стороны дома обычно наметает наиболее глубокие сугробы.
Если есть желание провести расчеты с более высокой точностью, то можно включить в формулу и поправочный коэффициент «с», приняв его равным:
— наветренная сторона дома: с = 1,2 ;
— подветренные стены дома: с = 1,0 ;
— стена, расположенные параллельно направлению ветра: с = 1,1 .
- «d» — поправочный коэффициент, учитывающий особенности климатических условий региона постройки дома
Естественно, количество теплопотерь через все строительные конструкции здания будет очень сильно зависеть от уровня зимних температур. Вполне понятно, что в течение зимы показатели термометра «пляшут» в определенном диапазоне, но для каждого региона имеется усредненный показатель самых низких температур, свойственных наиболее холодной пятидневке года (обычно это свойственно январю). Для примера – ниже размещена карта-схема территории России, на которой цветами показаны примерные значения.
Карта-схема минимальных январских температур
Обычно это значение несложно уточнить в региональной метеослужбе, но можно, в принципе, ориентироваться и на свои собственные наблюдения.
Итак, коэффициент «d», учитывающий особенности климата региона, для наших расчетом в принимаем равным:
— не холоднее – 10 °С: d = 0,7 .
- «е» — коэффициент, учитывающий степень утепленности внешних стен.
Суммарное значение тепловых потерь здания напрямую связано со степенью утепленности всех строительных конструкций. Одним из «лидеров» по теплопотерям являются стены. Стало быть, значение тепловой мощности, необходимое для поддержания комфортных условий проживания в помещении, находится в зависимости от качества их термоизоляции.
Огромное значение имеет степень утепленности внешних стен
Значение коэффициента для наших расчетов можно принять следующее:
— внешние стены не имеют утепления: е = 1,27 ;
— средняя степень утепления – стены в два кирпича или предусмотрена их поверхностная термоизоляция другими утеплителями: е = 1,0 ;
— утепление проведено качественно, на основании проведенных теплотехнических расчетов: е = 0,85.
Ниже по ходу настоящей публикации будут даны рекомендации о том, как можно определить степень утепленности стен и иных конструкций здания.
- коэффициент «f» — поправка на высоту потолков
Потолки, особенно в частных домах, могут иметь различную высоту. Стало быть, и тепловая мощность на прогрев того или иного помещения одинаковой площади будет различаться еще и по этому параметру.
Не будет большой ошибкой принять следующие значения поправочного коэффициента «f»:
— высота потолков до 2.7 м: f = 1,0 ;
— высота потоков от 2,8 до 3,0 м: f = 1,05 ;
— высота потолков от 3,1 до 3,5 м: f = 1,1 ;
— высота потолков от 3,6 до 4,0 м: f = 1,15 ;
— высота потолков более 4,1 м: f = 1,2 .
- «g» — коэффициент, учитывающий тип пола или помещение, расположенное под перекрытием.
Как было показано выше, пол является одним из существенных источников теплопотерь. Значит, необходимо внести некоторые корректировки в расчет и на эту особенность конкретного помещения. Поправочный коэффициент «g» можно принять равным:
— холодный пол по грунту или над неотапливаемым помещением (например, подвальным или цокольным): g= 1,4 ;
— утепленный пол по грунту или над неотапливаемым помещением: g= 1,2 ;
— снизу расположено отапливаемое помещение: g= 1,0 .
Нагретый системой отопления воздух всегда поднимается вверх, и если потолок в помещении холодный, то неизбежны повышенные теплопотери, которые потребуют увеличения необходимой тепловой мощности. Введём коэффициент «h», учитывающий и эту особенность рассчитываемого помещения:
— сверху расположен «холодный» чердак: h= 1,0 ;
— сверху расположен утепленный чердак или иное утепленное помещение: h= 0,9 ;
— сверху расположено любое отапливаемое помещение: h= 0,8 .
Окна – один из «магистральных маршрутов» течек тепла. Естественно, многое в этом вопросе зависит от качества самой оконной конструкции. Старые деревянные рамы, которые раньше повсеместно устанавливались во всех домах, по степени своей термоизоляции существенно уступают современным многокамерным системам со стеклопакетами.
Без слов понятно, что термоизоляционные качества этих окон — существенно различаются
Но и между ПВЗХ-окнами нет полного единообразия. Например, двухкамерный стеклопакет (с тремя стеклами) будет намного более «теплым» чем однокамерный.
Значит, необходимо ввести определенный коэффициент «i», учитывающий тип установленных в комнате окон:
— стандартные деревянные окна с обычным двойным остеклением: i= 1,27 ;
— современные оконные системы с однокамерным стеклопакетом: i= 1,0 ;
— современные оконные системы с двухкамерным или трехкамерным стеклопакетом, в том числе и с аргоновым заполнением: i= 0,85 .
- «j» — поправочный коэффициент на общую площадь остекления помещения
Какими бы качественными окна ни были, полностью избежать теплопотерь через них все равно не удастся. Но вполне понятно, что никак нельзя сравнивать маленькое окошко с панорамным остеклением чуть ли ни на всю стену.
Чем больше площадь остекления, тем значительнее общие теплопотери
Потребуется для начала найти соотношение площадей всех окон в комнате и самого помещения:
В зависимости от полученного значения и определяется поправочный коэффициент «j»:
Дверь на улицу или на неотапливаемый балкон — это всегда дополнительная «лазейка» для холода
Дверь на улицу или на открытый балкон способна внести свои коррективы в тепловой баланс помещения – каждое ее открытие сопровождается проникновением в помещение немалого объема холодного воздуха. Поэтому имеет смысл учесть и ее наличие – для этого введем коэффициент «k», который примем равным:
— одна дверь на улицу или на балкон: k= 1,3 ;
— две двери на улицу или на балкон: k= 1,7 .
- «l» — возможные поправки на схему подключения радиаторов отопления
Возможно, кому-то это покажется несущественной мелочью, но все же – почему бы сразу не учесть планируемую схему подключения радиаторов отопления. Дело в том, что их теплоотдача, а значит, и участие в поддержании определенного температурного баланса в помещении, достаточно заметно меняется при разных типах врезки труб подачи и «обратки».
Тип врезки радиатора
Значение коэффициента «l»
Радиатор полностью заключен в декоративный кожух
Итак, с формулой расчета ясность есть. Наверняка, кто-то из читателей сразу возьмется за голову – мол, слишком сложно и громоздко. Однако, если к делу подойти системно, упорядочено, то никакой сложности нет и в помине.
У любого хорошего хозяина жилья обязательно есть подробный графический план своих «владений» с проставленными размерами, и обычно – сориентированный по сторонам света. Климатические особенности региона уточнить несложно. Останется лишь пройтись по всем помещениям с рулеткой, уточнить некоторые нюансы по каждой комнате. Особенности жилья — «соседство по вертикали» сверху и снизу, расположение входных дверей, предполагаемую или уже имеющуюся схему установки радиаторов отопления – никто, кроме хозяев, лучше не знает.
Рекомендуется сразу составить рабочую таблицу, куда занести все необходимые данные по каждому помещению. В нее же будет заноситься и результат вычислений. Ну а сами вычисления поможет провести встроенный калькулятор, в котором уже «заложены» все упомянутые выше коэффициенты и соотношения.
Если какие-то данные получить не удалось, то можно их, конечно, в расчет не принимать, но в этом случае калькулятор «по умолчанию» подсчитает результат с учетом наименее благоприятных условий.
Можно рассмотреть на примере. Имеем план дома (взят совершенно произвольный).
Для примера взят совершенно произвольный план жилого дома
Регион с уровнем минимальных температур в пределах -20 ÷ 25 °С. Преобладание зимних ветров = северо-восточные. Дом одноэтажный, с утепленным чердаком. Утепленные полы по грунту. Выбрана оптимальное диагональное подключение радиаторов, которые будут устанавливаться под подоконниками.
Составляем таблицу примерно такого типа:
Помещение, его площадь, высота потолка. Утепленность пола и «соседство» сверху и снизу
Количество внешних стен и их основное расположение относительно сторон света и «розы ветров». Степень утепления стен
Количество, тип и размер окон
Наличие входных дверей (на улицу или на балкон)
Требуемая тепловая мощность (с учетом 10% резерва)
Затем, пользуясь размешенным ниже калькулятором производим расчет для каждого помещения (уже с учетом 10% резерва). С использованием рекомендуемого приложения это не займет много времени. После этого останется просуммировать полученные значения по каждой комнате – это и будет необходимая суммарная мощность системы отопления.
Результат по каждой комнате, кстати, поможет правильно выбрать требуемое количество радиаторов отопления – останется только разделить на удельную тепловую мощность одной секции и округлить в большую сторону.
Калькулятор расчета требуемой тепловой мощности отопления по помещениям
Согласитесь, что рассчитанные результаты, особенно если рассматривать по помещениям в отдельности, могут существенно отличаться от тех, которые получились бы при упоминавшимся выше соотношении 100 Вт на 1 м².
Кстати, калькулятор дает возможность немного «поиграть» с теми исходными данными, которые хозяева в силах изменить, и посмотреть, как будут меняться результаты. Возможно, это поможет выявить «слабые места» и придаст своеобразный импульс на принятие мер по обеспечению максимальной утепленности дома. Затраты на качественную термоизоляцию очень быстро окупятся экономией на системе отопления.
Приведенная система расчета тепловой мощности отопления может вызвать вопрос в том плане, что достаточно размыто указаны критерии утепленности стен. С этим можно согласиться – но это сделано лишь для упрощения самостоятельны вычислений с вполне допустимым уровнем погрешности. Если отталкиваться от точного «канонического» расчета тепловых потерь, алгоритм получится слишком сложным и громоздким, и далеко не каждый среднестатистический посетитель сможет с ним разобраться.
Тем не менее, в качестве полезного «бонуса» будет представлена несложная методика достаточно точной оценки теплотехнических характеристик стен и других элементов здания, чтобы любой хозяин смог сам увидеть, насколько они утеплены, и в какой дополнительной термоизоляции еще нуждаются.
Оценка степени утепленности элемента дома и требуемой толщины термоизоляции
Общий принцип расчета
Принцип расчета заключается в том, что каждая строительная конструкция жилого дома должна обладать определенным нормированным значением сопротивления теплопередаче. Эти параметры рассчитаны специалистами и сведены в таблицах СНиП, отдельно для каждого региона, в зависимости от особенностей климатических условий.
Таблицы слишком объемны, поэтому в нашем случае предлагаем воспользоваться картой-схемой, расположенной ниже.
Карта схема с нормированными значениями сопротивления теплопередаче строительных конструкций
Обратите внимание, что для стен, перекрытий (полов или потолков) и покрытий (кровля) указаны свои значений – они выделены различными оттенками.
Чаще всего и стены, и другие ограждающие элементы дома имеют многослойную конструкцию (впрочем, это не догма – возможно и однослойное строение, но так расчет будет ещё проще). Каждый из слоев обладает собственными характеристиками термического сопротивления, и все они в сумме дадут итоговый параметр.
Значение сопротивления теплопередаче для каждого отдельного слоя равно:
λх — значение коэффициента теплопроводности материала слоя. Это табличная величина, которую несложно отыскать в справочниках для любого из строительных, отделочных или утеплительных материалов.
Таким образом, зная особенности конструкции стены или другого ограждения, несложно рассчитать суммарную величину сопротивления теплопередаче и выявить, насколько она не соответствует нормированному значению. Ну а если полученную разницу умножить на коэффициент теплопроводности выбранного термоизоляционного материала, то это станет рекомендуемой толщиной утепления, чтобы конструкция соответствовала необходимым параметрам.
Упрощенная схема многослойной ограждающей конструкции
В предложенном ниже калькуляторе предусмотрен расчет для многослойной конструкции, включающей основной слой (поз. 1), уже имеющееся утепление (если оно есть) (поз. 2), слой внутренней (поз. 3) и внешней (поз. 4) отделки. Если каких-то слоев в реальности нет – то этот пункт в калькуляторе просто не заполняется.
Примечание: в расчёт не берутся внешние отделочные слои вентилируемых конструкций фасада или кровли (например, сайдинг или кровельный материал), так как их термическое сопротивление не оказывает значимого воздействия на общую утепленность.
Последним пунктом в калькуляторе будет предложено выбрать тот или иной вид утеплителя, и в результате расчетов будет указана рекомендуемая толщина термоизоляционного слоя.
Калькулятор оценки необходимости дополнительного утепления
Вот теперь оценить степень утепленности своих стен (или других элементов здания), для расчета необходимой тепловой мощности отопления – уже не составит большого труда. Можно поступить примерно так – ввести все запрашиваемые значения, а в конце указать в качестве утеплителя, например, минеральную базальтовую вату.
- Если получится результат, стремящийся к нулю (менее 10 мм толщины) или даже отрицательное значение, то можно считать стены хорошо утепленными.
- При рекомендуемой толщине утепления до 75 ÷ 80 мм можно условно считать, что стены имеют среднюю степень утепленности.
- В том случае, когда результат больше, а еще хуже — «зашкаливает» за 100 мм – беда, уровень теплопотерь очень высокий, и система отопления будет «пожирать» энергоресурсы на никому не нужный «обогрев улицы». И в этом случае главные усилия должны быть сконцентрированы на обеспечение надежной термоизоляции.
Безусловно, при желании в интернете можно отыскать более мощные программы профессионального уровня сложности для расчета теплотехнических характеристик системы отопления. В качестве примера – видеосюжет, в котором показан процесс подобного расчета. Но, повторимся, для проведения самостоятельных вычислений вполне подойдет и предложенная методика – уровень погрешности будет вполне допустимым.
Видео: пример расчета системы отопления с помощью специальной прикладной программы
Источники: http://otopleniedomov.com/otoplenie/raschet-otopleniya-po-ploshhadi-pomeshheniya-podrobnyjj-razbor-metodov.html, http://mr-build.ru/otoplenie/raschet-otopleniya-po-ploshhadi-pomescheniya.html, http://otoplenie-expert.com/sistemy-otopleniya/raschet-otopleniya-po-ploshhadi-pomeshheniya.html
Как вам статья?